Nous vous rappelons que, afin de garantir l'accès de tous les inscrits aux salles de réunion, l'inscription aux réunions est gratuite mais obligatoire.
Inscriptions closes à cette réunion.
36 personnes membres du GdR ISIS, et 60 personnes non membres du GdR, sont inscrits à cette réunion.
Capacité de la salle : 130 personnes.
Suite au succès de la première journée d'apprentissage statistique avec applications en santé, en décembre dernier, nous organisons une 2ème édition sur les thèmes Apprentissage et Santé, qui se déroulera le 21 octobre 2016.
Le programme de la journée comprendra des conférenciers invités, parmi lesquels un invité de prestige, Pr Dinggang Shen (UNC, USA, voir bio plus bas), qui présentera ses travaux en apprentissage profond pour l'imagerie médicale. Le programme inclura également des communications pour lesquelles un appel à contributions sera lancé.
L'objectif est de présenter des méthodes originales et des applications de lapprentissage statistique dans le domaine de la santé. Les données biomédicales possèdent en effet certaines spécificités devant être considérées par des méthodologies ad hoc. Les développements en apprentissage automatique ont permis de nouvelles avancées dans lextraction de connaissance, lanalyse la visualisation et la reconstruction de données médicales.
Cette journée thématique est loccasion de discuter des travaux les plus récents en apprentissage statistique et didentifier les nouvelles techniques et leurs utilisations pour les données biomédicales. Notre objectif est détablir un état de lieux utile pour deux communautés, celle des méthodes dapprentissage statistique et celle des données biomédicales. Les contributions de la journée porteront à la fois sur des aspects théoriques et sur des applications réelles fondées sur de lapprentissage statistique, dans différents domaines de la santé. Les domaines dintérêt sont :
La journée inclut des conférences invitées et des communications pour lesquelles nous lançons un appel à contributions.
Si vous souhaitez présenter vos travaux, merci d'envoyer vos propositions pour le 7 octobre 2016 au plus tard (titre, auteurs, affiliation, résumé de 15 lignes) aux organisateurs :
Pr. Dinggang Shen est directeur du « Image Analysis Core Lab » (au sein du Biomedical Research Imaging Center (BRIC)) de lUniversité de Caroline du Nord à Chapel Hill, NC, USA. Il a publié plus de 700 articles dans des journaux et conférences internationales (h-index actuel : 65), pour lesquels il a reçu de nombreux best paper awards et most cite paper award. Il fait partie de lEditorial Board de plusieurs revues de références (Cognitive Computation, IEEE TBME, IEEE J-BHI, PR, CMIG, Brain Informatics, ...). Pr. Shen est membre senior IEEE.
Gang Li, Image Analysis Core Lab, l'Université de Caroline du Nord à Chapel Hill, NC, USA.
Alexis Arnaud 1,2, Florence Forbes 1,2, Emmanuel L. Barbier 3,4, et Benjamin Lemasson 3,4
1 INRIA, 2 LJK Université Grenoble Alpes, 3 U836 INSERM, 4 GIN Université Grenoble Alpes
Hrishikesh Deshpande, Christian Barillot,Pierre Maurel, INRIA Rennes.
Benjamin Quost, Heudiasyc, UTC.
Chunfeng Lian, Su Ruan, Thierry Denoeux, Pierre Vera, Heudiasyc, UTC & LITIS Université de Rouen .
Pierre-Henri Conze, Vincent Noblet , François Rousseau , Fabrice Heitz , Vito de BlasiM, Riccardo Memeo and Patrick Pessaux, ICube UMR 7357, Université de Strasbourg.
Audrey Giremus et Jean-François Giovannelli. Université de Bordeaux.
Gaël Varoquaux, Centre de recherche INRIA Saclay.
Melissa Ailem, François Role, Mohamed Nadif, Université Paris Descartes.
Hadrien Bertran & Isabelle Bloch, Matthieu Perrot et Roberto Ardon(Philips), LTCI, Télécom ParisTech.
Dinggang Shen, Image Analysis Core Lab, l'Université de Caroline du Nord à Chapel Hill, NC, USA.
Soufiane Belharbi, Romain Modzelewski, Clément Chatelain, Romain Hérault, Sébastien Adam, Mathieu Chastan, Sébastien Thureauans, LITIS.
Orateurs Invités:
1) Dinggang Shen, Image Analysis Core Lab, l'Université de Caroline du Nord à Chapel Hill, NC, USA
Title: Deep Learning in Medical Image Analysis
3) Gaël Varoquaux, Centre de recherche INRIA Saclay.
Titre: Machine learning extracts neuro-phenotypes from the brain at rest
As functional brain imaging probes brain mechanisms, hope is that it can capture markers of subjects' psychiatric status. However, to form a simple and objective measure of neuro-psychiatric state, it must avoid complex psychological experimental paradigms. For this purpose, studying the brain at rest is ideal.
Indeed, resting-state fMRI is a promising source of functional biomarkers as, unlike typical task-based fMRI paradigms, it can be applied to diminished populations.
I will discuss a model of brain interactions at rest, the connectome, representing these interactions as a graph between brain regions. Predicting subject phenotypes, such as neuro-psychiatric states, based on their connectome implies a complex classification pipeline to learn and compare connectome. I will present our efforts to understand the different modeling steps: How to define functional brain regions? How to capture functional interactions in a subject? How to compare it across subjects? I will detail theoretical and experimental validation of each step.
Validation of these choices is very hard, as it often relies on assumptions about the data. Based on our understanding of the various steps, we have built a full pipeline that predicts Autism from rest-fMRI on unseen scanning site in the ABIDE dataset. To our knowledge, this is the first prediction of a clinically-relevant diagnosis status that carries over in inhomogeneous acquisitions settings. This full-blown experiment, on 871 subjects, also highlights what are the important choices in a population-level connectome analysis.
4) Benjamin Quost, Heudiasyc, UTC.
Titre: Apprendre à partir d'informations incertaines ? une approche évidentielle
L'apprentissage automatique a pour objectif de construire un modèle permettant de tirer des éléments de connaissance à partir d'un ensemble d'observations. Ces dernières sont typiquement des valeurs de variables (dites explicatives) observées sur différents objets. L'objectif du modèle peut être de grouper ces objets en catégories (clustering) ; ou de prédire une grandeur caractérisant les objets, pouvant être réelle (régression), catégorielle (classification), un ordonnancement des objets (ranking), etc.
Dans certains cas, les observations peuvent être incomplètes, imprécises, ou incertaines. Plutôt que de les supprimer ou au contraire d'ignorer leur caractère imparfait, il est possible de les prendre en compte, à condition de disposer d'un formalisme adéquat de gestion de l'incertain. Divers cadres théoriques ont été proposés pour ce faire : probabilités, probabilités imprécises, possibilités, fonctions de croyance, etc.
Dans cette présentation, nous montrerons comment la théorie des fonctions de croyance peut être utilisée pour représenter des informations incertaines et les prendre en compte dans un processus d'apprentissage, au moyen d'une variante de l'algorithme EM. Nous illustrerons nos propos sur différents problèmes d'apprentissage.
5) Hadrien Bertran & Isabelle Bloch, Matthieu Perrot et Roberto Ardon(Philips), LTCI, Télécom ParisTech.
Titre : Apprentissage profond pour la classification d'images MR
Dans l'objectif de construire un processus de traitement automatique d'images médicales, la première étape est d'identifier la région anatomique correspondante à une image, afin de pouvoir la rediriger vers des algorithmes spécialisés de segmentation. Nous utilisons pour cela des méthodes d'apprentissage profond, qui bien que donnant d'excellents résultats, soulèvent un certain nombre de questions. Comment choisir l'architecture du réseau ? Comment analyser les résultats et les améliorer ?
Présentations courtes :
1) Automatic segmentation and characterization of brain tumors using robust multivariate
clustering of multiparametric MRI
Alexis Arnaud 1,2, Florence Forbes 1,2, Emmanuel L. Barbier 3,4, et Benjamin Lemasson 3,4 1 INRIA, 2 LJK Université Grenoble Alpes, 3 U836 INSERM, 4 GIN Université Grenoble Alpes
Alexis Arnaud
Abstract : Brain tumor segmentation is a difficult task in the field of multiparametric MRI analysis because of the number of maps that are available. Furthermore, the characterization of brain tumors can be timeconsuming, even for medical experts, and the reference method is biopsy which is a local and invasive technique. Because of this, it is important to develop automatic and non-invasive approaches in order to help the medical expert with these issues. In this study we use a robust statistical model-based method to classify multiparametric MRI of rat brains. The voxels are gather into classes resulting from Multivariate Multi-scaled Student distributions, which can accommodate outliers. First we adjust a mixture model on a reference group of rats to learn the MRI characteristics of healthy tissues. Second we use this model to delineate the brain tumors as atypical voxels in the data set of unhealthy rats. Third we adjust a new mixture model only on the atypical voxels to learn the MRI characteristics of tumorous tissues. Finally, we extract a fingerprint for each tumor type to make a tumor dictionary. Our data set is composed of healthy rats (n=8 rats) and 4 groups of rats bearing a brain tumor model (n=8 per group). For each rat, we acquired 5 quantitative MRI parameters along 5 slices. And the proposed tumor dictionary reaches a rate of 75% of accurate prediction with a leave-one-out procedure.
2) Dictionary Learning for Pattern Classification in Medical Imaging
Hrishikesh Deshpande, Christian Barillot,Pierre Maurel, INRIA Rennes,
Abstract: Most natural signals can be approximated by a linear combination of a few atoms in a dictionary. Such sparse representations of signals and dictionary learning (DL) methods have received a special attention over the past few years. While standard DL approaches are effective in applications such as image denoising or compression, several discriminative DL methods have been proposed to achieve better image classification. In this talk, I will present our recent work on dictionary learning for pattern classification in medical imaging. This work demonstrated that the dictionary size for each class is an important factor in the pattern recognition applications where there exist variability difference between classes, in the case of both the standard and discriminative DL methods. The proposition of using different dictionary size based on complexity of the class data was validated in a computer vision application such as lips detection in face images, followed by more complex medical imaging application such as classification of multiple sclerosis (MS) lesions using MR images. The class specific dictionaries were learned for the MS lesions and individual healthy brain tissues, and the size of the dictionary for each class is adapted according to the complexity of the underlying data. The algorithm is validated using 52 multi-sequence MR images acquired from 13 MS patients.
3)
Pierre-Henri Conze? , Vincent Noblet? , François Rousseau** , Fabrice Heitz? , Vito de BlasiM, Riccardo Memeo *** and Patrick Pessaux ***
Pierre-Henri Conze conze@unistra.fr
Affiliations: ICube UMR 7357, Université de Strasbourg, CNRS, Federation de Médecine Translationnelle de Strasbourg. * Institut Mines-Telecom, Telecom Bretagne, INSERM, LATIM UMR 1101. *** Department of Hepato-Biliary and Pancreatic Surgery, Nouvel Hospital Civil, Institut Hospitalo-Universitaire de Strasbourg.
Abstract --Towards an efficient clinical management of hepato-cellular carcinoma (HCC), we propose a multi-label tissue classification framework dedicated to tumor necrosis rate estimation from dynamic contrast-enhanced CT scans. Based on machine learning, it requires weak interaction efforts to segment healthy, active and necrotic liver tissues. Our contributions are two-fold. First, we apply random forest (RF) on supervoxels using multi-phase supervoxel-based features that discriminate tissues based on their dynamic in response to contrast agent injection. Second, we extend this technique in a hierarchical multi-scale fashion to deal with multiple spatial extents and appearance heterogeneity. It translates in an adaptive data sampling scheme combining RF and hierarchical multi-scale tree resulting from recursive supervoxel decomposition. By concatenating multi-phase features across the hierarchical multi-scale tree to describe leaf supervoxels, we enable RF to automatically infer the most informative scales without defining any explicit rules on how to combine them. Assessment on clinical data confirms the benefits of multi-phase information embedded in a multi-scale supervoxel representation for HCC tumor segmentation.
5) Bayesian Inference for Biomarker Discovery in Proteomics
Audrey Giremus et Jean-François Giovannelli. Université de Bordeaux
Giremus
Abstract -- The presented work addresses the question of biomarker discovery in proteomics. More precisely, for a set of individuals, a status (Healthy or Pathological) and the concentrations for a given list of proteins are available. The tackled problem is to extract a short sub-list of proteins, namely the biomarkers, that enables to model the status. The work presents two cases. The first one accounts for biological variabilities and it is founded on natural models (Gaussian for the concentrations and Bernoulli for the status). It does not impose constraints in terms of a regression model. The second one includes in addition technological variabilities that may significantly impact observed concentrations. They are referred to as noiseless and noisy models, respectively. The developed selection strategy for both models is optimal in the sense that it minimizes a global mean error (misdetection and false identification). It is developed in a Bayesian framework and practically it amounts to selecting the model with the higher posterior probability. The key difficulty is to calculate these probabilities since they are based on the evidences that require marginalization. The key point of the work is that: for the noiseless case, we demonstrate the analytical solutions and for the noisy case, we propose an approximated solution. The methods are numerically assessed and compared to two existing methods on synthetic and clinical data.
6) Cancer Therapy Outcome Prediction based on Dempster-Shafer Theory and PET Imaging
Chunfeng Lian, Su Ruan, Thierry Denoeux, Pierre vera, Heudiasyc, UTC & LITIS Université de Rouen
Chunfeng Lian, Chunfeng Lian chunfeng.lian@gmail.com
Abstract: In cancer therapy, utilizing FDG-PET image-based features for accurate outcome prediction is challenging because of 1) limited discriminative information within a small number of PET image sets, and 2) fluctuant feature characteristics caused by the inferior spatial resolution and system noise of PET imaging. In this study, we proposed a Dempster-Shafer theory (DST) based approach to accurately predict cancer therapy outcome with both PET imaging features and clinical characteristics. First, a specific loss function with sparse penalty was developed to learn an adaptive low-rank distance metric for representing the dissimilarity between different patients' feature vectors. By minimizing this loss function, a linear low-dimensional transformation of input features was achieved. Also, imprecise features were excluded simultaneously by applying a sparsity regularization of the learnt dissimilarity metric in the loss function. Finally, the learnt dissimilarity metric was applied in an evidential K-nearest-neighbor (EK-NN) classifier to predict treatment outcome. The proposed method has been evaluated by two clinical datasets, showing good performance.
7) Un modèle de mélange croisé Poissonien pour la classification efficace de données médicales textuelles
Melissa Ailem, François Role, Mohamed Nadif , Université Paris Descartes
{melissa.ailem,francois.role,mohamed.nadif}@parisdescartes.fr LIPADE
Résumé : Au cours de la dernière décennie, plusieurs études ont démontré l?importance de la classification croisée pour produire simultanément des groupes d?objets et d?attributs. Même si l?objectif est d?obtenir une classification sur une seule dimension, les techniques de classification croisée sont souvent plus efficaces que les techniques de classification simples, en particulier lorsque l?on considère des données creuses (sparses) à grande dimension. Dans ce travail, nous proposons un modèle de blocs latents parcimonieux avec des distributions de Poisson sous contraintes (Sparse Poisson Latent Block Model (SPLBM)). Un point important est que ce modèle comprend la sparsité dans sa formulation, ce qui le rend particulièrement adapté à la classification croisée de matrices document-terme. Les avantages du modèle proposé sont de deux ordres. Tout d?abord, c?est un modèle probabiliste rigoureux et très parcimonieux. Deuxièmement, il a été spécialement conçu pour faire face aux problèmes de sparsité des données. En conséquence, en plus de la recherche de blocs homogènes, comme les autres algorithmes disponibles, il filtre les blocs non-informatifs qui sont dus à la sparsité des données. Des expériences sur une matrice document-terme biomédicale construite à partir de la base de données PUBMED et contenant des documents sur cinq maladies différentes, montrent l?efficacité de l?algorithme proposé pour révéler des co-clusters pertinents, co-clusters qui sont clairement indicatifs de chaque maladie. En outre, d?autres expériences sur diverses données textuelles provenant de différents domaines, de taille et de structure différentes montrent qu?un algorithme basé sur SPLBM surpasse clairement l?état de l?art des algorithmes de classification croisée. Plus particulièrement, l?algorithme proposé réussit à intercepter les structures naturelles des co-clusters issus de jeux de données asymétriques, des structures que d?autres algorithmes connus sont incapables de traiter efficacement.
8) Spotting L3 slice in CT scans using deep convolutional network andtransfer learning
Soufiane Belharbi, Romain Modzelewski, Clément Chatelain,
Romain Hérault, Sébastien Adam, Mathieu Chastan, Sébastien Thureau
Abstract: The slice of the third lumbar vertebra (L3) has been found to be
representative to the whole body composition. Therefore, it has been often used in body composition analysis in many pathologies. Thus, the need to localize this particular slice has been raised in the daily clinical routines. In this article, we present a complete automated system for localizing the slice containing the L3 vertebra in a 3D CT scan without any assumptions about which part of the patient's body is covered by the scan. In order to do that, we propose a machine learning regression approach that require very little annotation to be trained. The CT scans are converted into a MIP for concentrating the information, and a CNN is then applied in a sliding window fashion to handle the variable height of CT scans. Due to the luck of data, we investigate the application of transfer learning over CNN models
trained on natural scene images such as (Alexnet, VGG16, VGG19 and Googlenet). For training and evaluating our system, we collected in our clinical center 642 CT scans from different patients (L3CT1 dataset). We obtained promising results with an average localization error of 2.17 ± 2.70 slices.
Date : 2016-10-21
Lieu : amphi Thévenin, télécom Paris
Thèmes scientifiques :
B - Image et Vision
Inscriptions closes à cette réunion.
Accéder au compte-rendu de cette réunion.
(c) GdR IASIS - CNRS - 2024.